miércoles, 9 de julio de 2008

DIENCEFALO

El diencéfalo es la región anatómica del cerebro que se encuentra entre el tronco encefálico y los hemisferios cerebrales





Diencéfalo

El diencéfalo es la región anatómica del cerebro que se encuentra entre el tronco encefálico y los hemisferios cerebrales. Se extiende por delante entre el agujero interventricular y la comisura blanca posterior hacia atrás. Está limitado lateralmente por la cápsula interna. En la linea media se encuentra el III ventrículo el cual lo separa en dos regiones símétricas.
El diencéfalo se divide en cuatro zonas bien definidas que son las siguientes:
1.- El tálamo
2.- El hipotálamo
3.- El subtálamo
4.- El epitálamo
El tálamo y sus conexiones
Es la región más grande del diencéfalo, comprende una zona ovoide de sustancia gris ubicada a ambos lados del tercer ventrículo del cual forma las paredes laterales en la región mas dorsal y posterior. El extremo anterior del tálamo forma parte del agujero interventricular, mientras que el extremo posterior forma el pulvinar. En el interior del tálamo se encuentra la lámina medular interna, en forma de Y quien separa las tres regiones que se describen del tálamo con sus respectivos nucleos. Estas son las regiones anterior, medial y lateral.
Núcleos del tálamo
La zona anterior del tálamo contiene el núcleo anterior el cual forma parte del sistema límbico. Este participa en el procesamiento de las emociones y en mecanismos de memoria reciente. El núcleo anterior recibe aferencias del hipotálamo a través del tracto mamilotalámico y a su vez proyecta sus eferencias a la corteza cingulada.
La zona medial del tálamo tiene el núcleo dorsomediano. Este núcleo tiene amplias conecciones con la corteza prefrontal e hipotálamo. Este núcleo participa en la integración de aferencias viscerales, olfativas, somáticas así como en mecanismos que permiten percepciones subjetivas y emotivas.
La zona lateral del tálamo es la mas extensa. En ella se describen dos bandas nucleares, una banda dorsal y una banda ventral. En la banda dorsal se describen los núcleos lateral dorsal, lateral posterior y el pulvinar, mientras que en la banda ventral se describen los núcleos ventral anterior, ventral lateral, ventral postero-lateral y ventral postero-medial. Otros núcleos talámicos descritos son: los nucleos geniculados laterales, los núcleos geniculados mediales, los núcleos reticulares, los núcleos intralaminares y los núcleos de la linea media.
Los núcleos ventral anterior y ventral lateral juegan un rol importante en el procesamiento de la información motora, dado que reciben aferencias del cuerpo estriado (VA) y del cerebelo (VL) y proyectan respectivamente a la corteza premotora y a la corteza motora primaria.
Los núcleos ventral posterolateral y ventral posteromedial participan en el procesamiento de la información exteroceptiva y propioceptiva proveniente del territorio medular (lemnisco medial y haces espinotalámicos) y del territorio cefálico (lemnisco trigeminal). Esta información es enviada luego a la circunvolución postcentral o área somatosensorial primaria.
Si se utiliza criteros funcionales los núcleos talámicos se pueden clasificar en: a) núcleos específicos, b) núcleos de asociación y c) núcleos inespecíficos.
En los núcleos específicos se agrupan todos aquellos que reciben aferencias sensitivas u otras que establecen circuitos bien definidos tanto para procesar información sensitiva como motora que luego se proyecta a la corteza cerebral. Entre estos estan los núcleos geniculados laterales, geniculados mediales, ventrales postero laterales , ventrales posteromediales, ventral anterior, ventral lateral, y núcleo anterior del tálamo.
Los núcleos de asociación tienen conexiones recíprocas con areas de asociación cortical. Ellos son el pulvinar, el núcleo lateral posterior y lateral dorsal y el núcleo dorsomediano.
Los núcleos inespecíficos son aquellos que establecen amplias conexiones con otros núcleos del tálamo y otras regiones del sistema nervioso. Ellos son: los núcleos intralaminares los núcleos reticulares y los núcleos de la línea media del tálamo.

Algunos aspectos funcionales del tálamo
Las conexiones que el tálamo establece con la corteza son siempre ipsilaterales, no existiendo conexiones directas con la corteza del lado opuesto. Se acepta que el tálamo participa en dos grandes grupos de sensaciones. Por un lado estan las sensaciones discriminativas en que participan los sentidos especiales como visión ,audición, tacto, propiocención, dolor. Por otro lado están las sensaciones afectivas en las cuales participan los núcleos dorso mediano, anterior y reticulares.
La afectividad que un individuo demuestra está intimamente ligada a su tono emocional. Por ejemplo el estar enfermo, o sentir bienestar, el estar alegre o triste imprimen un sello distinto a la expresión de afectividad.
El nivel de desagrado o de agrado que cualquier estímulo produce en una persona dependerá del estado emocional de ella. Así por ejemplo el mismo estímulo doloroso, de temperatura o de tacto puede evocar una notable variedad de respuestas subjetivas en el individuo.

Hipotálamo y sus conexiones
Esta estructura se encuentra en la zona más anterior e inferior del diencéfalo . El extremo anterior limita con la lámina terminalis, hacia dorsal y de delante atrás se relaciona con la comisura blanca anterior y con el surco hipotalámico, caudalmente delimita con el mesencéfalo, medialmente forma las paredes laterales del III ventrículo y por último lateralmente está en contacto con el subtalámo. El límite inferior está dado de adelante atrás por el quiasma óptico , infundibulum y cuerpos mamilares.
Núcleos del hipotálamo
Los núcleos que se describen están agrupados en dos regiones. Estas son la medial y la lateral. El plano que separa estas regiones está dado por el tracto mamilotalámico y por los pilares anteriores del fornix.
Zona medial
En ésta se describen los núcleos:
1) Preóptico (parte de él también está en la zona lateral)
2) Paraventricular
3) Anterior
4) Dorsomedial
5) Ventromedial
6) Infundibular
7) Posterior.
Zona lateral
En ésta se describen los núcleos:
1) Supraóptico
2) Supraquiamático (parte de él tambien está en la zona medial)
3) Laretal
4) Tuberomamilar
5) Tuberales laterales
6) Mamilares (parte de ellos tambien están en la zona medial)

Conexiones aferentes de hipotálamo
El hipotálamo recibe múltiples conexiones aferentes relacionadas con funciones viscerales, olfativas y del sistema límbico. Entre éstas tenemos:
1) Las aferencias viscerales y somáticas que llegan al hipotálamo como colaterales de los sistemas lemniscales vía formación reticular.
2) Las aferencias corticales que llegan al hipotálamo directamente desde la corteza frontal
3) Las aferencias provenientes del hipocampo vía fornix-núcleos mamilares.
4) Las aferencias del núcleo amigdaloide vía estría terminalis
5) Las aferencias del tálamo provenientes de los núcleos dorsomediano y de la linea media
6) Las aferencias provenientes del tegmento mesencefálico.
7) Las aferencias provenientes de la retina al núcleo supraquiasmático.

Conexiones eferentes del hipotálamo
Estas son tambien muy numerosas y complejas. Entre ellas tenemos:
1) Eferencias mamilotalámicas hacia el núcleo anterior del tálamo, para luego proyectarse al al corteza cingulada.
2) Eferencias mamilo-tegmentales que permiten conexiones con la formación reticular del tegmento mesencefálico.
3) Eferencias descendentes al tronco encefálico y médula espinal. Estas permiten que el hipotálamo pueda influir en los centros segmentarios simpáticos y parasimpáticos tales como: núcleo accesorio del oculomotor, núcleos salivatorios superior e inferior, núcleo dorsal del vago, núcleos simpáticos del asta lateral , núcleos parasimpáticos de la región intermedio lateral de la médula sacra.
El hipotálamo tambien establece conexiones con la hipófisis de dos maneras diferentes. Una de ellas es a través del tracto hipotálamo-hipofisiario y la otra es a través de un sistema porta de capilares sanguíneos.
El tracto hipotálamo-hipofisiario permite que las hormonas vasopresina y oxitocina, que son sintetizadas por neuronas de los núcleos supraóptico y paraventricular respectivamente, sean liberadas en los terminales axónicos que contactan con la neurohipófisis. Estas hormonas actuan produciendo vasoconstricción y antidiuresis (vasopresina) o contracción de la musculatura uterina y de las células mioepiteliales que rodean los alveolos de la glándula mamaria (oxitocina), en la mujer.
El sistema porta hipofisiario, está formado por capilares que forman una red que desciende al lóbulo anterior de la hipófisis. Este sistema porta lleva factores de liberación hormonal que son sintetizados en el hipotálamo y cuya acción en el lóbulo anterior de la hipófisis inducirá la producción y liberación de hormonas tales como: adenocorticotrofina (ACTH), hormona folículo estimulante (FSH), hormona luteinizante (LH), hormona tirotrófica (TSH), hormona del crecimiento (GH), etc.
Funciones del hipotálamo
1) Control de funciones autonómicas. Distintos centros del hipotálamo ajustan y coordinan actividades de centros visceromotores del tronco encefálico y de médula espinal para regular el funcionamiento del corazón (frecuencia), presión arterial, respiración, actividad digestiva, etc.
2) Control de actividades somatomotoras involuntarias. El hipotálamo es capaz de dirigir patrones somatomotores asociados a emociones de rabia, placer, dolor, actividad sexual, etc.
3) Coordinación y control de actividades nerviosas y endocrinas. Esta función se produce a través de mecanismos reguladores entre hipotálamo e hipófisis como se señaló mas arriba.
4) Coordinación entre funciones voluntarias y autonómicas. Cuando un individuo enfrenta situaciones estresantes el corazón late a un ritmo más acelerado, la frecuencia respiratoria se altera, se puede producir sudoración, redistribución de flujo sanguíneo, etc.
5) Participación en comportamientos emotivos. Específicas regiones del hipotálamo se activan para llevar a comportamientos específicos. Por ejemplo cuando se activan los centros del hambre, se producen deseos de comer o cuando se activan los centros de la sed dan deseos de ingerir líquidos.
6) Participa en la regulación de la temperatura corporal. En estos mecanismos permite la coordinación con otras regiones del sistema nervioso para inducir mecanismos de produción o disipación del calor.
7) Controla los ritmos circadianos. El núcleo supraquiasmático es uno de los centros que coordina los ciclos que tienen que ver con la luz y la oscuridad. Este núcleo recibe conexiones directas de la retina y permite a través de conexiones con otras áreas del hipotálamo actuar en conjunto con la glándula pineal y formación reticular en la regulación de estos ciclos que se repiten a lo largo del tiempo.

El subtálamo y sus conexiones
La región subtalámica se encuentra entre el hipotálamo medialmente, la cápsula interna lateralmente y el tálamo dorsalmente. En ésta zona encontramos el núcleo subtalámico (la estructura de mayor tamaño) y la zona incerta. Los sistemas de fibras que en esta región se describen están dados por: el ansa lenticularis, el fascículo lenticularis y el fascículo subtalámico.
El núcleo subtalámico tiene la forma de un lente biconvexo. Sus principales aferencias provienen del segmento lateral del globus pallidus, vía fascículo subtalámico. Por otro lado las eferencias del núcleo subtalámico proyectan de vuelta al globus pallidus pero a su lámina medial..
Lesiones en el núcleo subtalámico producen alteraciones motoras consistentes en movimientos involuntarios violentos y mantenidos de extremidades y a veces de cuello y cara.
La zona incerta es una banda de sustancia gris ubicada entre el tálamo y el fascículo lenticular . Esta estructura se sabe que recibe conexiones de la corteza cerebral motora primaria , sin embargo sus eferencias son aún desconocidas.

El epitálamo y sus conexiones
Este comprende la glándula pineal, los núcleos habenulares y las estrías medulares.
La grándula pineal es una estructura que contiene neuronas, células de glía y células secretoras especializadas llamadas pinealocitos. Estos últimos sintetizan la hormona melatonina. Esta hormona además de inhibir la maduración de espermatozoides y oocitos, es importante en la regulación de los ritmos circadianos asociados a períodos de luz y oscuridad. La producción de melatonina aumenta en la noche y disminuye en el día. También se ha descrito que la melatonina es un potente antioxidante que ayuda a proteger el SNC.
Los núcleos habenulares son uno medial y uno lateral. Estos núcleos reciben aferencias de los núcleos septales vía estría terminal y proyectan sus eferencias vía fascículo retroflexus al núcleo interpeduncular.

martes, 8 de julio de 2008

FUINCIONAMIENTO GENERAL DEL CEREBRO.

Funcionamiento general
El cerebro usa la energía bioquímica procedente del metabolismo celular como desencadenante de las reacciones neuronales. Los 'paquetes' de energía se reciben en las dendritas y se emiten en los axones en forma de moléculas de sustancias químicas (sustancias que, por esa misma razón, se denominan neurotransmisores)

Cerebro humano

RM animada de una sucesión de cortes sagitales del cerebro humano.

Regiones metabólicas [editar]
Cada neurona pertenece a una región metabólica encargada de compensar la deficiencia o exceso de cargas en otras neuronas. Se puede decir que el proceso se ha completado cuando la región afectada deja de ser activa. Cuando la activación de una región tiene como consecuencia la activación de otra diferente, se puede decir que entre ambas regiones ha habido un intercambio biomolecular. Todos los resultados y reacciones desencadenantes son transmitidos por neurotransmisores, y el alcance de dicha reacción puede ser inmediata (afecta directamente a otras neuronas pertenecientes a la misma región de proceso), local (afecta a otra región de proceso ajena a la inicial) y/o global (afecta a todo el sistema nervioso).

Electricidad y bioelectricidad [editar]
Dada la naturaleza de la electricidad en el cerebro, se ha convenido en llamarlo bioelectricidad. El comportamiento de la electricidad es esencialmente igual tanto en un conductor de cobre como en los axones neuronales, si bien lo que porta la carga dentro del sistema nervioso es lo que hace diferente el funcionamiento entre ambos sistemas de conducción eléctrica. En el caso del sistema nervioso, lo porta el neurotransmisor.

Interacción neurotransmisora [editar]
Un neurotransmisor es una molécula en estado de transición, con déficit o superavit de cargas. Este estado de transición le da un tiempo máximo de estabilidad de unas cuantas vibraciones moleculares. El medio a través del cual se transmite es la mielina, responsable de la sinapsis neuronal, que conecta con el grupo de receptores dendríticos, descargando en la dendríta específica que admite el neurotransmisor portador de la carga. El paso del neurotransmisor por los axones estimula la creación de mielina, por lo que, a mayor cantidad de mielina, menor resistencia a la transmisión y menor uso de recursos.

Esquema de funcionamiento [editar]
El esquema de funcionamiento sería el siguiente: la neurona A demanda paquete de energía, la neurona B recibe el estímulo. La neurona B procesa paquete de energía, la neurona B emite paquete de energía con carga eléctrica. El paquete es transmitido por el cuerpo del axón gracias al recubrimiento lipídico, y es llevado hasta la dendrita de la neurona A que tiene por costumbre recibir ese tipo de paquetes. El triaxón de la neurona B libera el paquete y la neurona A lo descompone y asi sucesivamente

EL CEREBRO Y EL SISTEMA LIMBICO

EL SISTEMA LIMBICO ES CONOCIDO TAMBIEN COMO CEREBRO MEDIO Y ESTA COMPUESTAS POR OTROS ORGANOS COMO: LA AMIGDALA, TALAMO, HIPOTALAMO
ENTRE OTROS.

El cerebro humano está formado por varias zonas diferentes que evolucionaron en distintas épocas. Cuando en el cerebro de nuestros antepasados crecía una nueva zona, generalmente la naturaleza no desechaba las antiguas; en vez de ello, las retenía, formándose la sección más reciente encima de ellas.
Esas primitivas partes del cerebro humano siguen operando en concordancia con un estereotipado e instintivo conjunto de programas que proceden tanto de los mamíferos que habitaban en el suelo del bosque como, más atrás aún en el tiempo, de los toscos reptiles que dieron origen a los mamíferos. La parte más primitiva de nuestro cerebro, el llamado ‘cerebro reptil’, se encarga de los instintos básicos de la supervivencia -el deseo sexual, la búsqueda de comida y las respuestas agresivas tipo ‘pelea-o-huye’. En los reptiles, las respuestas al objeto sexual, a la comida o al predador peligroso eran automáticas y programadas; la corteza cerebral, con sus circuitos para sopesar opciones y seleccionar una línea de acción, obviamente no existe en estos animales. Sin embargo, muchos experimentos han demostrado que gran parte del comportamiento humano se origina en zonas profundamente enterradas del cerebro, las mismas que en un tiempo dirigieron los actos vitales de nuestros antepasados. ‘Aun tenemos en nuestras cabezas estructuras cerebrales muy parecidas a las del caballo y el cocodrilo’, dice el neurofisiólogo Paul MacLean, del Instituto Nacional de Salud Mental de los EE.UU. Nuestro cerebro primitivo de reptil, que se remonta a más de doscientos millones de años de evolución, nos guste o no nos guste reconocerlo, aún dirige parte de nuestros mecanismos para cortejar, casarse, buscar hogar y seleccionar dirigentes.
Es responsable de muchos de nuestros ritos y costumbres (y es mejor que no derramemos lágrimas de cocodrilo por esto).

EL SISTEMA LÍMBICO O CEREBRO EMOCIONAL El sistema límbico, también llamado cerebro medio, es la porción del cerebro situada inmediatamente debajo de la corteza cerebral, y que comprende centros importantes como el tálamo, hipotálamo, el hipocampo, la amígdala cerebral (no debemos confundirlas con las de la garganta). Estos centros ya funcionan en los mamíferos, siendo el asiento de movimientos emocionales como el temor o la agresión. En el ser humano, estos son los centros de la afectividad, es aquí donde se procesan las distintas emociones y el hombre experimenta penas, angustias y alegrías intensas El papel de la amígdala como centro de procesamiento de las emociones es hoy incuestionable.
Pacientes con la amígdala lesionada ya no son capaces de reconocer la expresión de un rostro o si una persona está contenta o triste.
Los monos a las que fue extirpada la amígdala manifestaron un comportamiento social en extremo alterado: perdieron la sensibilidad para las complejas reglas de comportamiento social en su manada. El comportamiento maternal y las reacciones afectivas frente a los otros animales se vieron claramente perjudicadas. Los investigadores J. F. Fulton y D. F. Jacobson, de la Universidad de Yale, aportaron además pruebas de que la capacidad de aprendizaje y la memoria requieren de una amígdala intacta: pusieron a unos chimpancés delante de dos cuencos de comida.
En uno de ellos había un apetitoso bocado, el otro estaba vacío. Luego taparon los cuencos. Al cabo de unos segundos se permitió a los animales tomar uno de los recipientes cerrados.
Los animales sanos tomaron sin dudarlo el cuenco que contenía el apetitoso bocado, mientras que los chimpancés con la amígdala lesionada eligieron al azar; el bocado apetitoso no había despertado en ellos ninguna excitación de la amígdala y por eso tampoco lo recordaban. El sistema límbico está en constante interacción con la corteza cerebral. Una transmisión de señales de alta velocidad permite que el sistema límbico y el neocórtex trabajen juntos, y esto es lo que explica que podamos tener control sobre nuestras emociones. Hace aproximadamente cien millones de años aparecieron los primeros mamíferos superiores. La evolución del cerebro dio un salto cuántico. Por encima del bulbo raquídeo y del sistema límbico la naturaleza puso el neocórtex, el cerebro racional. A los instintos, impulsos y emociones se añadió de esta forma la capacidad de pensar de forma abstracta y más allá de la inmediatez del momento presente, de comprender las relaciones globales existentes, y de desarrollar un yo consciente y una compleja vida emocional. Hoy en día la corteza cerebral, la nueva y más importante zona del cerebro humano, recubre y engloba las más viejas y primitivas. Esas regiones no han sido eliminadas, sino que permanecen debajo, sin ostentar ya el control indisputado del cuerpo, pero aún activas. La corteza cerebral no solamente ésta es el área más accesible del cerebro: sino que es también la más distintivamente humana. La mayor parte de nuestro pensar o planificar, y del lenguaje, imaginación, creatividad y capacidad de abstracción, proviene de esta región cerebral. Así, pues, el neocórtex nos capacita no sólo para solucionar ecuaciones de álgebra, para aprender una lengua extranjera, para estudiar la Teoría de la Relatividad o desarrollar la bomba atómica. Proporciona también a nuestra vida emocional una nueva dimensión. Amor y venganza, altruismo e intrigas, arte y moral, sensibilidad y entusiasmo van mucho más allá de los rudos modelos de percepción y de comportamiento espontáneo del sistema límbico. Por otro lado -esto se puso de manifiesto en experimentos con pacientes que tienen el cerebro dañado-, esas sensaciones quedarían anuladas sin la participación del cerebro emocional. Por sí mismo, el neocórtex sólo sería un buen ordenador de alto rendimiento. Los lóbulos prefrontales y frontales juegan un especial papel en la asimilación neocortical de las emociones. Como ‘manager’ de nuestras emociones, asumen dos importantes tareas:
En primer lugar, moderan nuestras reacciones emocionales, frenando las señales del cerebro límbico.
En segundo lugar, desarrollan planes de actuación concretos para situaciones emocionales. Mientras que la amígdala del sistema límbico proporciona los primeros auxilios en situaciones emocionales extremas, el lóbulo prefrontal se ocupa de la delicada coordinación de nuestras emociones.
Cuando nos hacemos cargo de las preocupaciones amorosas de nuestra mejor amiga, tenemos sentimientos de culpa a causa del montón de actas que hemos dejado de lado o fingimos calma en una conferencia, siempre está trabajando también el neocórtex.

martes, 1 de julio de 2008

CORTEZA CEREBRAL.

Este articulo se trata de la corteza cerebral la cual es La corteza cerebral es la parte más voluminosa del encéfalo. Una hendidura profunda, denominada cisura longitudinal, lo divide en dos hemisferios, derecho e izquierdo.

Corteza cerebral
La corteza cerebral es la parte más voluminosa del encéfalo. Una hendidura profunda, denominada cisura longitudinal, lo divide en dos hemisferios, derecho e izquierdo.La corteza es una fina lámina de neuronas interconectadas que forman una capa de unos milímetros de grosor y que recubre la superficie irregular de los hemisferios cerebrales. La superficie de cada hemisferio presenta un conjunto de prominencias y surcos (o cisuras) que proporcionan a la corteza una apariencia plegada, de tal forma que sólo un tercio de esta queda expuesta a la superficie. Tres de estas cisuras sirven para delimitar ciertas áreas del cerebro. Son: 1) surco central o cisura de Rolando, 2) surco lateral o cisura de Silvio, y 3) surco parietooccipital. Las eminencias situadas entre los surcos reciben el nombre de circunvoluciones o pliegues. La circunvolución central anterior se sitúa por delante del surco central, y la circunvolución central posterior se coloca inmediatamente detrás del surco central.Cada hemisferio se divide en cuatro grandes lóbulos: frontal, parietal, temporal y occipital. En general, los lóbulos se sitúan debajo de los huesos que llevan el mismo nombre. Así, el lóbulo frontal descansa en las profundidades del hueso frontal, el lóbulo parietal debajo del hueso parietal, el lóbulo temporal debajo del hueso temporal y el lóbulo occipital debajo de la región correspondiente a la protuberancia del occipital.Los surcos o cisuras mencionadas anteriormente actúan como estructuras limítrofes entre algunos de los lóbulos cerebrales. El surco central se localiza entre los lóbulos frontal y parietal. El surco lateral separa el lóbulo temporal situado debajo de los lóbulos frontal y parietal situados encima. El surco parietooccipital puede visualizarse en la superficie central del cerebro.
pie3();